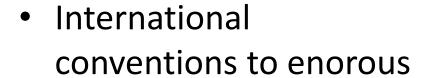


Probabilistic damage stability verification on *Passenger Yacht Code* motor yacht

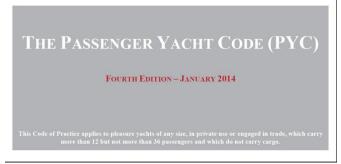

Presente // Blanka Ascic
Mentor // prof. Dario Boote
Tutor // Emanuele Camporese

Content

- Passenger Yacht Code
- Damage Stability
- Deterministic Approach
- Probabilistic Approach
- Conclusions

Passenger Yacht Code

SOLAS 90



 PYC – equivalent to SOLAS 90 for yachts

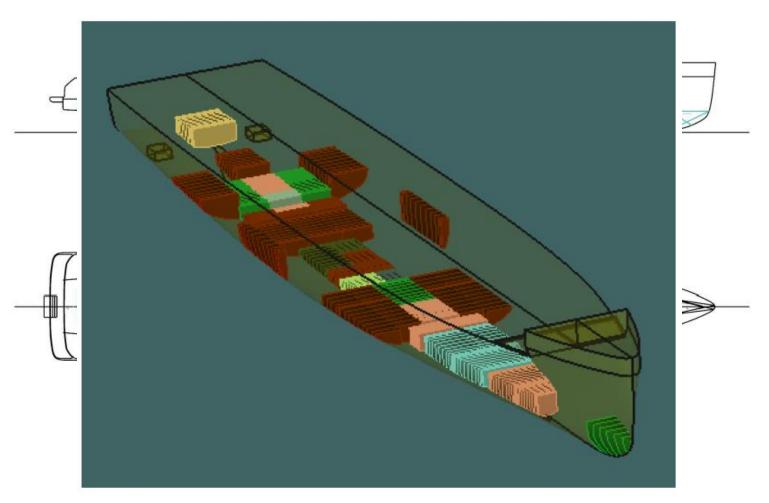
cishipping.com

Damage Stability

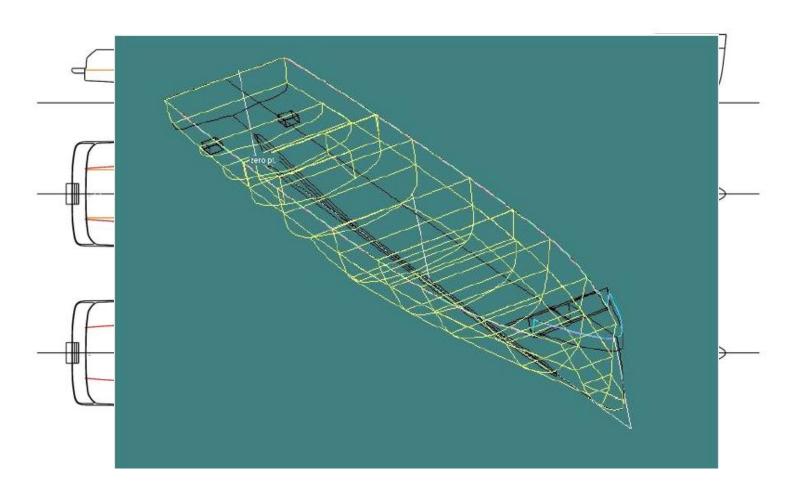
Deterministic approach

- Assumed damage scenarios
- Up to two adjacents compartments flooded

Probabilistic approach


- Statistical evidence
- More realistic approach

Objective: most effective ship subdivision


Case Study - 92 m motor yacht

- Moulded dimensions:
 - LOA = 92 m
 - B = 15,8 m
 - D = 7.7 m
- Displacement of 3178 t
- Number of crew: 28
- Number of passengers: 34

Capa Caty asian Playdromax

Wate wisher tight per trapent rate phydromax

Intact Stability Calculations

- Departure condition 100% consumables
- Half load condition 50% consumables
- Arrival condition 10% consumables

Results

	CODE	Criteria	Value	Units	Actual	Status	Margin %
50	11.2.1.1 Monohulls	11.2.1.1.1a Area 0 to 30				Pass	
		from the greater of					
		spec. heel angle	0	deg	0		
		to the lesser of					
.00_		spec, heel angle	30	deg	30		
		angle of vanishing stability	55,8	deg			
		shall not be less than (>=)	3,1513	m.deg	14,4122	Pass	357,34
	11.2.1.1 Monohulls	11.2.1.1.1b Area 0 to 40				Pass	
.50		from the greater of					
		spec. heel angle	0	deg	0		
		to the lesser of					
		spec. heel angle	40	deg	40		
20		first downflooding angle	n/a	deg			
.00		angle of vanishing stability	55,8	deg			
		shall be greater than (>)	5,1566	m.deg	22,1786	Pass	330,1
				Ť			
	11.2.1.1 Monohulls	11.2.1.1.2 Area 30 to 40				Pass	
0.50		from the greater of					
		spec, heel angle	30	deg	30		
		to the lesser of					
ı		spec. heel angle	40	deg	40		
1		first downflooding angle	n/a	deg			
.00		angle of vanishing stability	55,8	deg			
		shall be greater than (>)	1,7189	m.deg	7,7664	Pass	351,82
		,	-,				
	11.2.1.1 Monohulls	11.2.1.1.3 Max GZ at 30 or greater				Pass	
		in the range from the greater of					
		spec. heel angle	30	deg	30		
		to the lesser of					
-		angle of max. GZ	30.9	deg	30.9		
		first downflooding angle	n/a	deg			
		shall be greater than (>)	0,2	m	0,829	Pass	314,5
		Intermediate values			-,		,-
		angle at which this GZ occurs		deg	30,9		
		angre ar variet and our decides		ueg	20,1		
	11.2.1.1 Monohulls	11.2.1.1.4 Angle of maximum GZ				Pass	
		shall not be less than (>=)			30.9	Pass	23,64
			2.5	200	20,7	A 1100	20,04
	11.2.1.1 Monohulls	11.2.1.1.5 Initial GMt				Pass	
		spec. heel angle	0	deg			
		shall not be less than (>=)	0.15	m	2.089	Pass	1292,67

Damage Stability Calculations

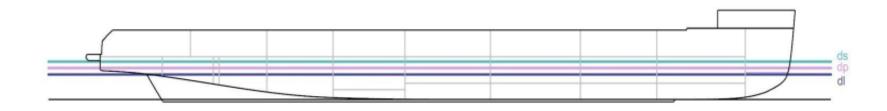
CORE	6 11 1		. .,		C1 1	Margin
CODE	Criteria	Value	Units	Actual	Status	%
11.3 Damage	11.3.1.1 Equilibrium waterline				Pass	
	shall not be less than (>=)	0,075	m	1,991	Pass	2554,67
	44.04.47 33.1				_	
11.3 Damage	11.3.1.4 Equilibrium angle	_			Pass	
	shall not be greater than (<=)	7	deg	0,3	Pass	96,14
11.2 D	11 2 1 4 Power of a cities at 1 lites				Pass	
11.3 Damage	11.3.1.4 Range of positive stability shall not be less than (>=)	15	1	41.0		170.05
	shall not be less than (>=)	15	deg	41,8	Pass	178,85
11.3 Damage	11.3.1.4 Value of max. GZ				Pass	
11.5 Damage	shall not be less than (>=)	0.1	m	0.41	Pass	310
	shall not be less than (>-)	0,1	111	0,41	rass	310
11.3 Damage	11.3.1.4 GZ area under curve				Pass	
11.5 Damage	shall not be less than (>=)	0.8594	m.deg	9,9577	Pass	1058,68
	shall not be less than (*)	0,0371	m.ucg	2,2311	1 833	1030,00
Enhanced	4.30(1)(a)(i) Angle of equilibrium				Pass	
	shall be less than (<)	7	deg	0.3	Pass	96,14
	, ,					
Enhanced	4.30(1)(a)(i) Range of residual positive				Pass	
	shall not be less than (>=)	7	deg	14,9	Pass	112,6
Enhanced	4.30(1)(a)(ii) Maximum residual GZ				Pass	
	shall not be less than (>=)	0,05	m	0,41	Pass	720
Enhanced	4.30(1)(a)(ii) Residual GM				Pass	
	shall not be less than (>=)	0,05	m	0,875	Pass	1650
Enhanced	4.30(1)(a)(iii) Margin line immersion - GZ				Pass	
	shall be less than (<)	100	%	1,78	Pass	98,22

Required index R

 Formula based on length and number of passengers

$$R = 1 - \frac{5000}{L_{\rm S} + 2.5N + 15252}$$

Attained index A


 Represents a measure for the probability of survival

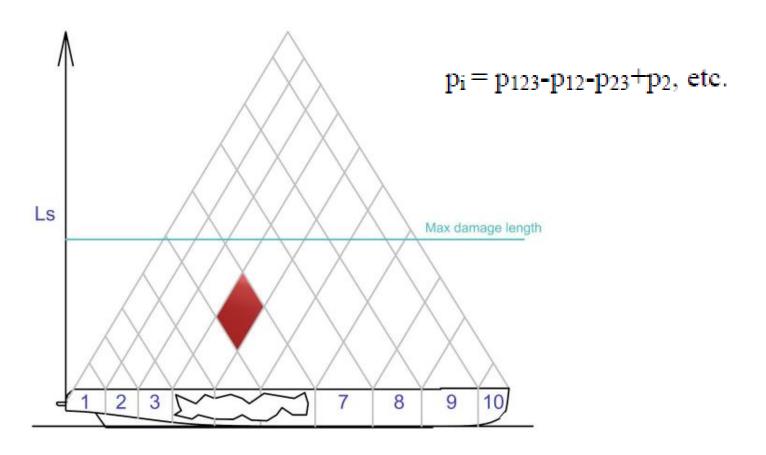
$$A = \sum_{i} p_{i} v_{i} r_{i} s_{i}$$

Attained index ≥ Requred index

Attained index A

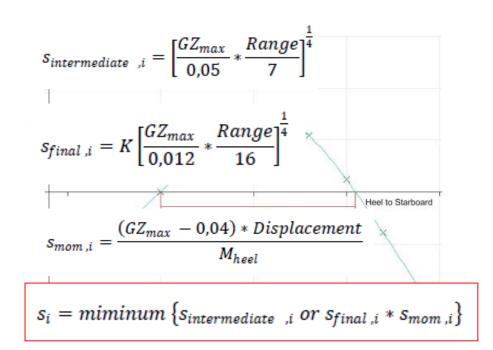
- Deepest subdivision draft, ds
- Light service draft, dl
- Partial subdivision draft, dp

$$A = 0.4As + 0.4Ap + 0.2A1$$

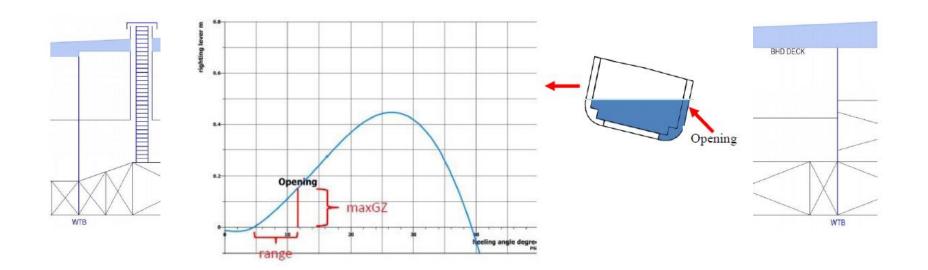

Al, **Ap** and **Ad** ≥ 0,9 R

Attained index A

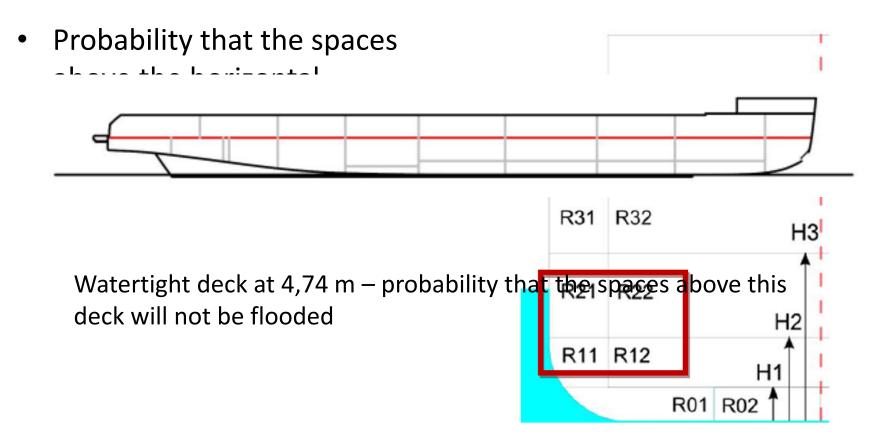
- pi probability of a damage situation
- si probability of a ship surviving the damage
- vi vertical extent of the damage
- ri transversal extent of the damage



Calculating Factor pi


Calculating factor si

- Range range of positive righting levers, in degrees, measured from the equlibrium heeling angle and the angle where the righting lever becomes negative
- GZmax maximum positive righting lever



Calculating factor si

Veneticialgsscapes

Calculating factor vi

Final Results of Attained Index A

	Compartment	xl	x2	Damage length	T=3,985	T=4,114	T=4,2	
	1 compartment flooded			[m]				
	1	0	8,29	8,29	0,0540	0,0495	0,0524	
0,9R	Al		Ap				Ad	
0,6120	0,8447		0,7853				0,8300	
0,0120	0,0447			υ,	1033			0,0300
	I		ı				ı	
	10	13,01	00,07	10,2	0,0407	0,0414	0,0407	
-		86,07	92,65	6,58	0,0407	0,0374	0,0395	
-	2 compartments flooded		15.11	15.11	0.0264	0.0224	0.0252	
-	1 and 2	0	15,11	15,11	0,0364	0,0334	0,0353	
-	2 and 3	8,29	22,27	13,98	0,0295	0,0271	0,0287	
-	3 and 4	15,11	31,07	15,96	0,0337	0,0309	0,0327	
_	4 and 5	22,27	44,67	22,4	0,0423	0,0388	0,0410	
_	5 and 6	31.07	55.87	Ad^{1,8}≥ 0	.939R	0,0423	0,0447	
_	6 and 7 A		340 C			0,0360	0,0380	
	7 and 8	55,87	75,87	20	0,0397	0,0365	0,0385	
	8 and 9	64,08	86,07	21,99	0,0433	0,0398	0,0420	
	9 and 10	75,87	92,65	16,78	0,0415	0,0381	0,0403	
	3 compartments flooded							
	1, 2 and 3	0	22,27	22,27	0,0093	0,0101	0,0106	
	2, 3 and 4	8,29	31,07	22,78	0,0075	0,0081	0,0086	
_	= $A = 0$.	,	,	,-	-,	-,	.,15	
	8, 9 and 10	64,08	92,65	28,57	0,0057	0,0062	0,0065	
	4 compartments flooded							
	1, 2, 3 and 4	0	31,07	31,07	0,0030	0,0033	0,0035	
	2, 3, 4 and 5	8,29	44,67	36,38	0,0021	0,0023	0,0024	
	3, 4, 5 and 6	15,11	55,87	40,76	0,0005	0,0005	0,0005	
	4, 5, 6 and 7	22,27	64,08	41,81	0,0002	0,0002	0,0002	
	A (0.81			•				
	3, 4, 5, 6 and 7	15,11	64,08	48,97	0,0000	0,0000	0,0000	
	4, 5, 6 , 7 and 8	22,27	75,87	53,6	0,0000	0,0000	0,0000	
	5, 6, 7, 8 and 9	31,07	86,07	55	0,0000	0,0000	0,0000	
	6, 7, 8, 9 and 10	44,67	92,65	47,98	0,0000	0,0000	0,0000	
	6 compartments flooded							
	1, 2, 3, 4, 5 and 6	0	55,87	55,87	0,0000	0,0000	0,0000	
	2, 3, 4, 5, 6 and 7	8,29	64,08	55,79	0,0000	0,0000	0,0000	
	3, 4, 5, 6, 7 and 8	15,11	75,87	60,76	0,0000	0,0000	0,0000	
					Al	Ap	As	
_					0,8447	0,7853	0,8300	

Comparison of Results

Lloyd's Register

Passenger Yacht Code

$$R = 0.68$$

$$R = 0.68$$

$$A = 0.82163$$

$$A = 0.81054$$

Difference of 0,8 %

Conclusions

- It is possible and safe to use this approximation for a rough estimation of the indices A and R
- Deterministic approach still the most reliable, but can be reassessed when it becomes too onerous
- Probabilistic approach consideres a large number of damage cases and requires more work but it can result in a more flexible bulkhead arrangement
- PYC and probabilistic method have been well received giving more flexibility on general arrangement and lifesaving appliances which are of high importance in the yacht industry